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This investigation deals with three-dimensional mixed flows of an ideal
gas in Laval nozzles., The study is concerned particularly with the form
of the surface of transition in the case when the velocity at the center
of the flow approaches the velocity of sound, while the derivative of
the velocity in the direction of the canal axis at that point vanishes.
A theorem is derived which is a generalization for three-dimensional
motion of a well-known theorem of Prankl and Gortler, valid in the cases
of plane-parallel and axisymmetrical gas streams [ 1,2 ]. On the basis of
this theorem two possible types of flows in the neighborhood of the
throat of a nozzle, and the possibility of transition of one type into
the other are discussed.

1. The equations describing three-dimensional irrotational isentropic
flows of an ideal gas in a cartesian coordinate system have the form
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where a is the velocity of sound, x is the exponent of the Poisson
adiabatic, @ is the potential, u, v and » are the vector components of
the velocity q along the x-~, y- and z-axes respectively. The system of
units is chosen in such a manner as to make the magnitude of critical
velocity a = 1.

Using Equations (1,.2) and (1.3), we will write Equation (1.1) in the
form
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It is known that in the region of the throat of the Laval nozzle either
of two types of mixed flows may exist, In the first, in the subsonic
velocity field, there are local supersonic zones, adjacent to the walls
of a canal (Taylor's flows); in the second, the velocity varies from sub-
sonic to supersonic as it passes through the throat of the nozzle
{Meyer’'s flow)., Plane and axisymmetrical gas flows of both types were the
subjects of investigation of several papers [1-10 1; analogous three-
dimensional problems were investigated by the author [11,1217.

In the present paper we are investigating the conditions under which
the supersonic zones which are adjacent to the walls of the nozzle are
joined on the axis of the channel and how the transition from mixed
three-dimensional gas motion of the Taylor type to the Meyer flow takes
place. For this we shall investigate a stream which will be assumed to
have two mutually perpendicular planes of symmetry in the region of the
sonic surface. The straight line along which these planes intersect co-
incides with the axis of the channel and we shall also let it be co-
incident with the z-axis. We will assume in what follows that the direc-
tion of the velocity vector of the main flow of a gas is along this axis,
also at the origin of the coordinate system its magnitude approaches the
velocity of sound. Thus, the point x= y = z = 0 is the point of inter-
section of the channel axis with the surface of transition, i.e. it is
the center of the flow {6 1.

In [8,9,12 ] solutions were obtained describing a limiting case of
the Taylor flow in which local supersonic zones join on the axis of the
nozzle in such a way that the sonic surface is orthogonal to this axis.
The corresponding flow pattern is not unique in the three-dimensional
motions of gas. We shall investigate, therefore, the possibility of an~
other type of limiting Taylor flow where the transition surface from
subsonic to supersonic velocities is tangent to the x-axis at the center
of the nozzle, In this case it is necessary that

Gujdzx=0 when r=y=z=90 {1.5)

We shall consider the consequences derived from the condition (1.5).
Assuming the stream to be analytical, we shall expand, in accordance with
the representation above, the expression for the velocity potential @ in
the form of a power series

OO
Q= D ¢ om0y (1.6
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where the coefficients %500° %190 and 8949 BTE given by the relationships
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g0 = 0, aipo = 1, aseg == 0 (1.7)

Substituting the series (1.6) into the equation of motion (1.4) and
equating in the expression thus obtained the terms with the same powers
x, y and z, it is possible to establish relationships which connect the
coefficients 2], 28,20

The equation obtained through correlation of the coefficients of
xhyz”zzv has the form
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2. Equation (1.8) which correlates the coefficients %1, %m,2n of the
solution (1.8) is the unique deseription of the gas flow in the region
of its center (the shape of the nozzle is not given a priori). Before we
begin their detailed study, we shall investigate certain basic qualita-
tive peculiarities of three-dimensional motions. For this we shall limit
the number of terms in the expansion (1.6) to the fourth order inclusive.
From the first five terms of Equation (1.8) we have

@o20 -+ @oo2 = 0, ayz0 -+ G102 = 0, @ag0 -+ Ag0g = 0 (2.1)

2
Bagio - Goza = 4020 (120 + q)> Bagos + dogz = 4agos (2102 + Bgg) {(2.2)

In a sufficiently small region of the plane x = 0, containing the
origin of the coordinates, coefficients 8929 and %09 characterize the
magnitudes of the cross-sectional components of the stream velocity. In
the same region the coefficients @109r %1g2s %239 and 4303 give the
values of the first and the second derivatives of the components v and »
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along the x-axis, and determine the direction of the gas velocity near
the plane x = 0.

From Equations (2.1) there follows that the quantities 2,20 and 8309

%90 and G109 and 8990 and ay09 BTE of opposite sign.

Thus, in the plane x = 0 and near it, one of the cross-sectional com-
ponents of the particle velocity is directed to the center of the flow,
the other away from it, i.e. in one of the two planes of symmetry of gas
motion the stream converges, in the other, it diverges. This picture is
a distinguishing feature of three-dimensional flows, as in the plane and
axisymmetrical motions a similar structure of the velocity field is im-
possible also because of the condition (1.5), as it is shown in [21]
that all the coefficients af,2.,2n(r =0,1, 2, m,n=20, 1, 2, ...),
except %00 = 1, become zero, Moreover, in this latter case the sonic
surface becomes plane, namely, perpendicular to the axis of the channel,
and within that surface any cross-sectional component of the stream velo-
city vanishes. In the general case of three-dimensional flows, solely as
a consequence of condition (1.5), an infinite system of equations (1.8)
is established, the first of which are Equations (2.1) and (2.2).

If we require, however, that in the first quadrant of the plane x =0
the quantities v and », dv/dz, 0w /Px, 0%v/dx% and 02w/0x% are to have the
same signs, excluding a reversal of sign, i.e. that in this region of the
plane in all directions either convergence or divergence takes place,
then from Equations (2.1) and (2.2) we obtain immediately

Q2g == Qo2 = G129 = @1g2 == (220 == (303 = Qgag == Agg1 == Agaz = 0 (2.3
If one develops the expansion (1.6) for the potential ® to the next
higher terms (up to sixth order included), it may be shown that in this
case also

Q149 == A1gq = Qpp == Augq == Aapq == Qogg = () (2.4)

Thus, in the approximation considered in this paragraph the sonic sur-
face is, as in the case of plane and axisymmetrical flows, a plane per-
pendicular to the axis of the channel. Both cross-sectional components
of the gas-particle velocity vanish in this plane and, moreover,
du/dx = 0, Note that the assumptions about the signs of functions v and
», dv/dx and dv/dx, 0%v/9x? and 9%w/x® made above do not constitute a
significant limitation, since in real nozzles convergence of the stream
takes place in all directions up to the critical cross-section and after
this, divergence.

3. We shall prove now the theorem pertaining to three-dimensional
supersonic flows which serves as a strict proof of the results obtained
in the preceding paragraph.



538 0.8, Ryzhov

Theorem. Let a flow of an ideal gas be given, which has two mutually
perpendicular planes of symmetry y = 0 and z = 0 and which is analytical
at the point s = y = z= 0 and in some region K about this point.
Further, let the stream velocity u(x, 0, 0) along the x-axis approach
the local velocity of sound at the point x = 0, also let the derivative
of the velocity there vanish:

u=1, Ou/dr=0 forz=y=z=0 (3.1)

Finally, let the quantities v and », Jv/dx and dw/dx 0°v/dx% and
9%w/31? have the same signs in the first quadrant of the plane z = 0
without reversal of sign.

For all y and z in X we then have
u(0,y,z)=1, 9u (0, y, 2) / 0x = 0, v(0, 4, 2)=w(0,y,2)=0 (3.2)

From the assumptions of the theorem, Equations (1.7) are derived. To-
gether with (2.3), we have

agos = @ogo = dgoz == 0, 300 =1, @120 = G102 == 0 fg00 = ogp = dzea = 0 (3.3)

Equations (3.2) lead to the system

o,2m,2n = %1,0m,2n = %g,0m,on = 0 (mn=0,1,2,...) (3.4)

for all x, y, z within K, with the exception of ayop = 1. The proof of
the relationships (3.4) will be carried out by the method of exact
mathematical induction. For this purpose we shall make the following
assumptions:

By, m,2m = @1,9m,0n=%p,0m,on = 0 for m4-n<o—1 3.5)
(with the exception of %100 = 1), and we shall show that Formulas (3.5)
are valid also for »+ n = o.

In Equation (1.8) we shall assume A =7 (r =0, 1, 2), p+v =0~ 1;

using system (3.5), we obtain 3.6)

Qe+ 2)(2p 4+ 1) @ gut1)av T v+2)2v+ 1) O puivt1) = Optv=0—1,7v=0,1,2)

¥We shall write the expression which contains terms of the order of
2 0~ 1, and which are included in the expansions of functions v(0, y,2),
»(0, y, 2), 9v(0, y, 2)/dx, 9w(0, y, z)/0x, d%v(0, y, 2)/8x% and %e(0,
¥, 2)/9x2, in the form of power series (3.7)
2{o—1)
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In accordance with the requirement (3.5), Formulas (3.7) give the
first terms of the expansions of the corresponding functions. Because in
the first quadrant of the plane x = 0 the components of the stream velo-
city v and » and their first two derivatives with respect to x must,
according to the assumption, have the same signs without reversal, the
constants

%1900 %roe(~1)  %roger %rgo-1.2 (r=-0,1,2)

also must be of the same signs. But this condition contradicts the re-
lationships (3.6). Hence, it follows that it is necessary that

O ouzy =0 (p+v<o 7=0,1,2) (3.8)

except a;,, = 1. Since for 0 = 1 and ¢ = 2 Equations (3.5) are identical
with Equations (3.3), the theorem is fully proven, Note that in the case
of plane flows and of flows with axial symmetry the conditions imposed

on the signs of functions v»(0, y, z) and #»(0, y, z) and on their first
derivatives with respect to x are fulfilled automatically. Thus, the
theorem proven in this paragraph is a generalization for three-dimension-
al gas flows of the results of Frankl and Gortler [1,2].

4. As has been shown, the condition (3.1) in the general case of
three-dimensional flows of a gas does not lead to the case that the sur-
face of transition passing through the center of the flow becomes plane.
Only if additional requirements are imposed, i.e. if a stream is sub-
jected to either convergence or divergence from all sides in the region
of the plane x = 0, are Formulas (3.2) the consequence of condition (3.1).
In this case the velocity is equal to the sound velocity throughout the
plane x = 0 while the cross-sectional velocity components vanish. More-
over, for z = 0 the derivatives dv/dx, Ow/dx, 9°v/3x? and 3%e/0s% also
become zero. But since the walls of the channel are formed by the stream
lines, analytical mixed flows with a plane transition surface from sub-
sonic to supersonic velocities are possible only in special nozzles with
sufficiently gradual variation of the form of the walls in the region of
the critical cross-section. Therefore, for the merging of the local
supersonic zones at the nozzle axis, which are adjacent to its walls,
the derivative du/dx, generally speaking, is not equal to zero in the
center of the flow, except when the stream is subjected to convergence
in all directions up to the critical cross-section and thereafter to di-
vergence. Corresponding solutions of the equations of gas motion have
been studied earlier, where it was shown that in this case the region of
supersonic velocities is bounded by the two surfaces which are orthogonal

to the nozzle axis at the point of intersection with it and mutually
tangent at this point [12 ],

In conciusion we shall note that only analytical flows have been con-
sidered here. The derived relations are not valid for flows with dis~
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continuities in the derivatives of the velocity components.
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